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A new fully automated store-trajectory simulationcode has been developed. The method couples a highly robust
computational � uid dynamics method and a cut-paste algorithm for Chimera domain decomposition to enhance
the ef� ciency of store-trajectory simulation. The time-step size limitationcaused by grid movement is relaxed with
the interpolation of solutions in the previous time step. A treatment for orphan cells is also devised to improve the
robustness of the method. The computational results show that the current method is capable of simulating store
separation without user interruption and that a time-step size of 0.005 s, which is more than three times larger
than ever reported, can be used for the Eglin Wing/Pylon/Store separation problem.

Nomenclature
C p = pressure coef� cient
Cx , Cy , Cm = axial, normal, and pitching moment coef� cients
D = diagonal matrix, ( D s / D t + 1) I
F̂ = generalized � ux vector, îE + ĵF + k̂G ¡ Q»
F̃ = numerical � ux vector
I = identity matrix
Ix x , Iyy , Izz = inertia of the store in x , y, z directions
i, j, k = grid indices
kr = blanking index
L = characteristic length of the store
Li , L j , Lk = implicit operators
m = mass
n̂ = outward normal vector
Q = conservativevariables
R = residual
t = time
U = normal velocity components to @V in the moving

coordinate, n̂ ¢ (v ¡ »)
u, v, w = velocity components in x , y, z directions
V = control volume
v = velocity vector
x , y, z = spatial coordinates
@V = surface of the control volume
h = pitch angle
» = grid velocity
q , p, e = density, pressure, total energy
s = � ctitious time
u = circumferential angle of the three-dimensional

store
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Subscripts

t = time
1 = freestream

Introduction

S INCE the Chimera grid technique1 was introduced to the com-
putational� uiddynamics(CFD)community,it hasbeengaining

in popularitynot only becausegrid generationover complexgeome-
tries is relativelysimple compared to the multiblockgrid generation
technique but because the Chimera method is the most successful
method of handling the relative movement of multiple bodies. The
Chimera grid technique is naturally suitable for moving-bodyprob-
lems. One moving-bodyproblemfrequentlyencounteredin aerody-
namic applications is the trajectory prediction of a store separating
from a parent aircraft.

There have been several reports that successfully predict the
trajectory of the well-known Eglin Wing/Pylon/Store problem.2 ¡ 5

Recently, ripple release simulations of multiple stores have been
reported.6 ¡ 8 However, with CFD trajectory prediction is not a rou-
tine engineeringapplication.The major stumblingblock in the path
of this goal comes from the fact that most Chimera methods rely
on interactive approaches for Chimera hole cutting.9,10 The com-
putations, furthermore, are often hindered by the lack of ef� ciency
and robustnessof the CFD tools. In this paper efforts are presented
toward this goal. These efforts include implementing an automated
Chimera hole cutting method, a cut-paste algorithm,11 combined
with a two-step donor cell search. The cut-paste algorithm is the
advancing front technique for Chimera hole cutting. Solid walls or
nonpenetrableboundariesare used as the initial hole-cuttingbound-
ary so that user input is minimized. With this method Chimera hole
cutting can be done automatically for unsteady applications. Also,
a two-step donor cell search ensures a fast and reliable search. As
stated by Lijewski,4 computationoften fails becauseof the presence
of orphan cells. A proper handling of orphan cells without loss of
accuracy is a must for full unsteady simulations. Furthermore, the
time-stepsize is limitedby the presenceof cells that are initiallyhole
cells and become normal cells as the grid moves without being up-
dated. Methods are devised to handle such problems to enhance the
robustnessof the Chimera method. In addition,a highly robust CFD
method11 is used for aerodynamic forces and moment calculations.

The objectiveof the paper is to enhancethe ef� ciency and robust-
ness of the computational and Chimera methods so that the store
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prediction method can be used as an engineering tool in the near
future. The trajectory computations of the Eglin Wing/Pylon/Store
and ripple release from TER (Triple Ejection Rack) are presented
showing that the current method satis� es the objective of this study.

Chimera Hole Cutting
Most existing Chimera methods need user-speci�ed hole cutting

surfaces for the Chimera hole cutting. In PEGASUS,9 for example,
the user must specify the hole-cutting surfaces as well as the hole
grid, whereas in DCF3D10 the user has to de� ne the hole-cutting
surfaces by combinationsof simple analytical shapes like cylinders
and spheres. Recently, research has focused on the automation of
the Chimera hole cutting. The Beggar code,12 for example, auto-
matically determines the hole-cutting surfaces from user-speci�ed
solid walls. Also, Wey developed an automated method13 in which
the initial hole-cutting surfaces advance outward to the � nal hole-
cuttingsurfaces,whichmeet certaincriteria.The advancingdistance
is computed based on the relative distances between the fronts in
the domain and ranges of the grid points.

In this paper a new Chimera domaindecompositionalgorithm11 is
developed.It is a two-step method, consistingof the initial hole cut-
ting and the cut-pastealgorithmbasedon Wey’s method.Solid walls
or nonpenetrable boundary condition, which are also used for the
� ow solver, are used for the initial hole cutting. The hole cutting is
performed by applying a zone of interference algorithm and a hole
map algorithm. During the second step, the hole-cutting surfaces
march outward along the grid line until there is no cell to be cut.
Then, the paste phase adds two layers of interpolationcells outside
the fringecells.This allows not only minimizationof the overlapped
region,but also controlover how much the grids are overlapped.Be-
cause the advantageof the discrete nature of the grid is considered,
the number of iterationsneeded is less than that of Wey’s algorithm.
With the iterativeprocess,moreover,the overlappedregion is placed
midway between bodies where the solution gradient is small com-
pared to the region near the solid wall, which can reduce the error
associated with trilinear interpolation especially for viscous � ow
computations.There are two alternatives in applying the method: a
manualmode in which only the � rst step is appliedand an automatic
mode in which both the two steps are applied.A detaileddescription
of the cut-paste algorithm can be found in Ref. 11.

Donor Cell Search
For the donor cell search a two-step search method, a stencil

walk14 followed by a gradient search,15 is adopted.The stencil walk
� nds the nearest cell to a given interpolationcell by comparing the
distance between the interpolationcell and the possible donor can-
didate cells. When the grid is severely skewed, the stencil walk fails
to � nd the correct donor cells. The gradient search, on the other
hand, checks whether the interpolation cell actually lies inside the
cube that is made with the eight donor candidate cells by comput-
ing the isoparametric coordinates. This two-step search, therefore,
guarantees the success of the donor cell search. The gradient search
rarely needs more than two iterations. Furthermore, the interpola-
tion coef� cients are the byproductof the gradientsearch.This donor
cell search can be performed across the block interface boundaries
between grids. For the multiple overlapped region the donor cell is
determined from among possible donor cells according to a user-
speci� ed preference list. For unsteady problems the search cost can
be greatly reduced by using the donor cells at the previous time step
as the initial search guess.

Interpolation and Orphan Cells
Trilinear interpolation is used to communicate solutions across

the grid system. The interpolationcoef� cients, as mentioned in the
precedingsection, are computedduring the second step of the donor
cell search,thegradientsearch.The interpolationis doneafterupdat-
ing the solutionsof every grid component.One or some of the donor
cells for a given interpolation cell are often found to be hole cells,
which are known as orphan cells. It is possible to remove the or-
phan cells by adding more grid points. However, this can increase
the numberof gridpoints inhibitingcomputations.Furthermore,one

cannot know beforehand whether or not the assembled grid system
has orphan cells. The Beggar code,12 for example, does not allow
orphan cells to occur. Once an orphan cell does occur, one must
add more grid points near the problematic region or regenerate the
grid system and then start the solution process all over again. In
this paper, on the other hand, the occurrenceof a limited number of
orphan cells is allowed. The solutions of the hole cell are replaced
with those of the nearest cell among eight donor cells. If all of the
donor cells are found to be hole cells, the solutions of the nearest
normal cell are used to replace the solutionsof the eight donor cells.
This procedure lowers the formal order of accuracy of the trilin-
ear interpolation.Because the number of orphan cells is usually far
less than that of the valid interpolation cells, however, the loss of
accuracy is found to be minimal.

Flow Solver
The compressibleEuler equations can be written in integral form

over a control volume V (t ) moving with velocity »:

d
dt

Z

V (t)

Q dV +
Z

@V (t)

F̂ dS = 0 (1)

with

Q = ( q , q u, q v, q w , e)T (2)

F̂ = ( î E + ĵ F + k̂G ¡ Q») ¢ n̂

=

2
66664

q k

q uk + pnx

q vk + pny

q wk + pnz

(e + p)k + pn t

3
77775

(3)

also,

k = (v ¡ ») = ¡ n t + nx u + n yv + nzw (4)

n t = » ¢ n̂ = n x nx + n y n y + n znz (5)

where Q, », and n̂ are the conservativevariables, the grid velocity,
and the outward normal vector, respectively.

This system of Euler equations is discretized using the � nite
volume method in conjunction with Roe’s approximated Riemann
solver.16 MUSCL extrapolation17 of primitive variables is used
to obtain second-order spatial accuracy, whereas Van Albada’s
limiter18 or the minmod limiter is used to maintain the total-
variation-diminishing property near shocks. Also, the entropy � x

Fig. 1 Surface grid of Eglin Wing/Pylon/Store case.
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Fig. 2 Linear trajectory (validation case); M 1 = 0.95, and ® = 0 deg.

Fig. 3 Angular trajectory (validation case); M 1 = 0.95, and ® = 0 deg.

Fig. 4 Linear velocity (validation case); M 1 = 0.95, and ® = 0 deg.
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Fig. 5 Angular velocity (validation case); M1 = 0.95, and ® = 0 deg.

Fig. 6 Force coef� cients (validation case); M 1 = 0.95, and ® = 0 deg.

Fig. 7 Moment coef� cients (validation case); M1 = 0.95, and ® = 0 deg.
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Fig. 8 Surface pressure coef� cients; Á = 5 deg.

Fig. 9 Surface pressure coef� cients; Á = 185 deg.

suggested by Harten19 is applied to avoid expansion shock. Dual
time stepping20 with alternating direction implicit is used to ad-
vance the solution in time. This allows one not only to use a large
time increment but to maintain temporal accuracy. The dual time
stepping eliminates factorization and linearization errors by iterat-
ing the solutions along an arti� cial time. The resulting discretized
form of Eq. (1) can be written as

L i D
¡ 1 L j D

¡ 1 Lk D Q = ¡ kr D s R (6)

where

R = (Qn ¡ Q) / D t + (1/ V )
h
( F̃ D S)i + 1

2
¡ ( F̃ D S)i ¡ 1

2

+ ( F̃ D S) j + 1
2

¡ ( F̃ D S) j ¡ 1
2

+ ( F̃ D S)k + 1
2

¡ ( F̃ D S)k ¡ 1
2

in

D = ( D s / D t + 1)I (7) Fig. 10 Separation sequence at every 0.1 s.
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Also, the indexn denotes the dual time step. The i -directionalfactor
is given by

Li =

»
D + kr

D s

V

³³
@F̃i + 1

2

@Q i + 1

+
@F̃i + 1

2

@Q i

´
D Si + 1

2

¡

³
@F̃i ¡ 1

2

@Q i

+
@F̃i ¡ 1

2

@Q i ¡ 1

´
D Si ¡ 1

2

¼́
(8)

Other factors take similar forms. The number of dual time iterations
is found to be around 20, suf� cient for accurate simulations through
numerical experiments. A detailed description of the solver can be
found in Ref. 21.

Fig. 11 Angular trajectory, comparision of ejector models.

Fig. 12 Linear velocity, comparision of ejector models.

Table 1 Store mass properties and ejector
characteristics of single release

Properties Eglin Wing/Pylon/Store case

Center of gravity 4.65 ft aft of store nose
Forward ejector location 4.06 ft aft of store nose
Rear ejector location 5.73 ft aft of store nose
Forward ejector force 2,400 lb
Rear ejector force 9,600 lb
Ejector stoke length 0.33 ft
Ix x 20 slug-ft2

Iyy 360 slug-ft2

Izz 360 slug-ft2

Weight 2,000 lb
Freestream mach number 0.95
Angle of attack 0
Altitude 26,000 ft
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Fig. 13 Angular velocity, comparision of ejector models.

Fig. 14 Linear trajectory, time-step-size study; D t = 0.0005, 0.005.

Fig. 15 Angular trajectory, time-step-size study; D t = 0.0005, 0.005.
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Fig. 16 Force coef� cients, time-step-size study; D t = 0.0005, 0.005.

Fig. 17 Moment coef� cients, time-step-size study; D t = 0.0005, 0.005.

Time-Step Size Limitation
The time-step size in time-accuratecomputationsusing Chimera

grids is limited not only by the numerical instabilityand accuracyof
the CFD method but also by the time-step size limitation. The time-
step size limitationcan be understoodfrom Eq. (7). The � rst term on
the right-hand side of the residual is not correctly calculated when
a hole cell in the previous time step becomes a normal cell without
evenbeing an interpolationcell. The previoustime-stepsolutionsof
such a cell are not valid. The time-step sizes required to accurately
resolve the physical processes being simulated are generally much
smaller than the time-step sizes limited by the grid movement.22

However, with the large time-step sizes being used here, this was
not the case. Instead of using a smaller time-step size, the solutions
of those cells at the previous time step were interpolated.

Numerical Examples
Eglin Wing/Pylon/Store

The validity of the current Chimera method and the solution
procedure is tested against known captive trajectory system (CTS)

results.2 The initial c.g. position and the mass propertiesof the store
and the ejector characteristics are summarized in Table 1. A C-H
type grid (129 £ 44 £ 49) generated over the wing and an O-O type
(121 £ 27 £ 26) over the pylon are overlapped and used as a major
grid system together with the H-H grid (105 £ 51 £ 85) to ease in-
terpolation.A grid system of four block grids (130 £ 32 £ 25 each)
is used to discretize the domain near the missile and is the only grid
system allowed to move freely. The total number of grids is approx-
imately 1.2 million points. Figure 1 shows the surface grid of the
test case and the outline of the H-H grid system. As can be seen in
Fig. 1, a sting is modeled as in the wind-tunnel test.

The initial steady-state solution was obtained in 3000 iterations
with local time stepping for fast convergence. The code runs at
11.7 l s per iteration per grid point on CRAY T916. The initial grid
assemblytook0.73 l s CPU time per interpolationcellwith the man-
ual modeand7.81 l s per interpolationcellwith theautomaticmode.
The numbersof interpolationcells for themanualmodeand theauto-
matic mode are 124,014and 143,663,respectively.The equationsof
motion of the store are integrated with the four-stage Runge–Kutta
method for a larger time-step size. Chimera domain decomposition
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was doneat everytime step, includingthe intermediateRunge–Kutta
steps,whichmeans fourapplicationsof the Chimera domaindecom-
positionin every time step.The time-stepsizeused was 0.005s. This
time-stepsize is over three times larger than whatwas used in Ref. 3.
The time step requiredto resolvethedynamicsof uncontrolledstores
is far larger than thatneeded to maintainthe stabilityand accuracyof
the � ow solver.The robustnessand accuracyof the solveris believed
to be the main reason for using such a large time step. The unsteady
grid assembly took 0.17 and 3.94 l s for the manual mode and the
automatic mode on average, respectively. The total CPU time for
the initial condition and the unsteady computation is about 42 h
with the manual mode compared to about 102 h with the automatic
mode. Because of the inviscid nature of the � ow, the solutions of
both modes show little difference. Therefore, only the solutions of
the automaticmode are shown here.The advantageof the automatic
mode, however, will be evident in viscous computationbecause the
interpolationswill occur away from the boundary-layerregion.

Figures 2 and 3 show the trajectories and Euler angles of the
store compared with the CTS data, showing good agreement with
thedata,whereasFigs.4 and5 showthe linearandangularvelocities.
Figures 6 and 7 show the force and moment coef� cientsof the store.
The computational results match well with the data except for the

Fig. 18 Surface grid of TER case.

Fig. 19 Linear trajectory, bottom store, TER case.

axial force coef� cient, which cannot be predictedcorrectlywith any
Euler solvers. In Figs. 8 and 9 the surfacepressurecoef� cients at the
initial condition and during the separation are presented, showing
excellent agreementwith the experimental results. Figure 10 shows
the separation sequence at every 0.1 s.

As indicated in Ref. 5, the ejector forces were incorrectly mod-
eled in the CTS simulation. The ejector forces should be modeled
in a nonmoving frame so that they can generate rolling and yawing
moments on the store. As can be seen in Figs. 11–13, the rolling
velocities are almost doubled with the correct ejector model. This
is exactly the opposite of the results of Ref. 5. The leading-edge
sweep of the wing generates an asymmetric pressuredistributionon
the store and causes the c.g. to shift inboard immediately after the
store is released. Because of the offset of the c.g., the ejector forces
cause positive rolling moments on the store resulting in large posi-
tive rolling velocities. Similar rolling characteristicscan be seen in
Fig. 23 in Ref. 4. Figures 14 and 15 present the time histories of
the linear and angular positionof the store with different time steps.
The computations were performed with the correct ejector model.
The two results are almost identical indicating that D t = 0.005 s is
enough for accurate computations. The force and moment coef� -
cient histories (Figs. 16 and 17) con� rm the argument.

Ripple Release from TER

As an example of the versatility of the present method, a ripple
release from TER was chosen. The simulation was made with the
corrected ejector model. The same initial orientation of three stores
given in Ref. 6 are used in these computations. Figure 18 depicts

Table 2 Store mass properties and ejector
characteristics of the TER case

Properties TER case

Center of gravity 4.65 ft aft of store nose
Forward ejector location 4.06 ft aft of store nose
Rear ejector location 5.73 ft aft of store nose
Forward ejector force 1,800 lb
Rear ejector force 7,200 lb
Ejector stoke length 0.33 ft
Ix x 10 slug-ft2

Iyy 180 slug-ft2

Izz 180 slug-ft2

Weight 1,000 lb
Freestream mach number 0.95
Angle of attack 0
Altitude 26,000 ft
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Fig. 20 Linear trajectory, outboard store, TER case.

Fig. 21 Linear trajectory, inboard store, TER case.

Fig. 22 Angular trajectory, bottom store, TER case.
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Fig. 23 Angular trajectory, outboard store, TER case.

Fig. 24 Angular trajectory, inboard store, TER case.

the surface grid of the current case. The number of grids used to
discretize the computational domain is 15 including an H-H grid
(110 £ 81 £ 85) for improved interpolation.The outline of the H-H
grid can also be found in Fig. 18. The total number of grid points is
over 2.1 million. The � ight conditions are the same as those in the
singlestorerelease.The storemasspropertiesand theejectorcharac-
teristics are the same as used in Ref. 6 and given in Table 2. Because
the mass and inertia are reduced by half, the in� uence of aerody-
namic forces and moment are more signi� cant in the TER case than
in the earlier release case. Because of CPU intensive computation,
the simulation was carried out with the manual mode only. The ini-
tial grid assembly took 0.89 l s per interpolation cell, whereas the
unsteady grid assembly took 0.22 l s on average.The two time-step
sizes of 0.0025 and 0.005 s are chosen to compute the trajectories.
Figures 19–21 show the linear trajectories of three stores, whereas
Figs. 22–24 show the angular trajectories. These � gures indicate
that the results with two time-step sizes are similar and that enough
resolution can be obtained with D t =0.005 s. Figure 25 shows the
separation sequence at every 0.05 s. Fig. 25 Separation sequence at every 0.05 s.
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Conclusions
A fully automated store trajectory simulation code has been de-

veloped. The code has been named Multibody Separation Analysis
Program. The code uses a cut-pastealgorithmfor Chimera hole cut-
ting, a two-step donor cell search, and a highly robust Euler solver.
Throughnumericalexamples thedemonstrationwas made that,with
the new Chimera method, the singleor multiple release of stores can
be simulated with a relatively large time-step size. Also, the time-
step sizes limited by the grid movement can be larger than those
required to resolve the physics of the � ow being studied, and this
limitation can be relaxed by the interpolationof the previous time-
step solution.
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